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Abstract: As a result of climate change, extreme precipitation events are expected to 

increase in frequency and intensity. Runoff from these extreme events poses threats to 

water quality and human health. We investigated the impact of extreme precipitation and 

beach closings on the risk of gastrointestinal illness (GI)-related hospital admissions 

among individuals 65 and older in 12 Great Lakes cities from 2000 to 2006. Poisson 

regression models were fit in each city, controlling for temperature and long-term time 

trends. City-specific estimates were combined to form an overall regional risk estimate. 

Approximately 40,000 GI-related hospital admissions and over 100 beach closure days 

were recorded from May through September during the study period. Extreme precipitation 

(≥90th percentile) occurring the previous day (lag 1) is significantly associated with beach 

closures in 8 of the 12 cities (p < 0.05). However, no association was observed between 
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beach closures and GI-related hospital admissions. These results support previous work 

linking extreme precipitation to compromised recreational water quality.  

Keywords: aged; bathing beaches; climate change; Great Lakes region; gastrointestinal 

diseases; rain 

 

1. Introduction 

The concentration of bacterial indicators in recreational water, such as Escherichia coli (E. coli), 

has been linked to cases of waterborne disease [1–3]. Health risks associated with exposure to 

contaminated recreational water include skin, eye, ear, and upper respiratory irritations and infections, 

as well as gastrointestinal illness (GI) [4]. Populations that may be at greater risk for contracting GI 

from contaminated recreational water include children, the elderly, and individuals with compromised 

immune systems [5].  

The 1986 United States Environmental Protection Agency (EPA) recreational water quality criteria 

for freshwater beaches include a daily E. coli concentration of less than 235 colony forming units 

(CFUs) per 100 milliliters of water [2–6]. Bacteria concentrations exceeding these criteria trigger 

swimming advisories and/or beach closures to prevent exposure to waterborne pathogens.  

Recreational water can be contaminated from both point and nonpoint sources [7,8]. Additionally, 

recreational water quality is influenced by precipitation and other hydrometeorological parameters [9,10]. 

Precipitation is positively correlated with E. coli concentrations in recreational water [11–13]. High 

concentrations of fecal indicator-bacteria have been linked to GI-related health risks [14], specifically 

E. coli concentrations in freshwater [15]. 

Heavy precipitation and subsequent stormwater runoff can flush pathogens and other 

microorganisms directly into nearby surface water, resulting in increased concentrations of bacteria, 

and increased risk of waterborne disease [16–18]. Curriero et al. [16] observed that between 1948 and 

1994, 51 percent of waterborne outbreaks occurring in the U.S. were preceded by precipitation above 

the 90th percentile. Additionally, Rose et al. [19] observed that between 1971 and 2004, 20 to 40 

percent of outbreaks occurring in the U.S. were associated with precipitation above the 90th percentile.  

Previous studies have also reported a delayed onset of diarrheal disease following heavy rainfall 

events [16,20–22]. One explanation for the observed lag could be that the incubation period of 

waterborne pathogens ranges from one day, for pathogens such as Shigella, Salmonella, and Rotavirus, 

to two weeks for pathogens such as Cryptosporidium and E. coli [23,24]. In general, cases of GI peak 

within seven days of exposure to contaminated water [25,26]. 

Under predicted climatic changes, more extreme rain events are expected to occur, particularly in 

the Great Lakes region, which may increase the risk of poor recreational water quality [17].  

Few epidemiological studies have looked at the effects of precipitation on beach closures and 

subsequent human health outcomes using time series analysis. This study investigates the association 

between beach closures and GI-related hospital admissions, comparing multiple smoothing approaches 

to control for long-term time trends. 
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While swimmers may be directly impacted by poor recreational water quality, elderly non-swimmers 

may be exposed to pathogens via drinking water as a result of increased turbidity following extreme 

events [22]. Our goal was to characterize the link between extreme precipitation and human health,  

by first evaluating the association between extreme precipitation and beach closures, and subsequently 

evaluating the risk of GI-related hospital admissions among the elderly as a function of both extreme 

precipitation and the occurrence of beach closures. Because recreational water quality data were only 

available during summer months, we introduce an innovative method to control for long-term time 

trends in the discontinuous data and evaluate the potential bias of using a discontinuous time-series. 

2. Experimental Section 

2.1. Study Location  

The U.S. Great Lakes region provides approximately 40 million people with water used for 

drinking, fishing, recreation, and industry [17,27]. The region encompasses over 1,000 beaches and 

5,500 miles of shoreline [28]; currently the region experiences the highest percentage of beach 

closures as a result of poor water quality compared to other regions in the U.S. [29]. This study 

includes both inland beaches and beaches along the Great Lakes in the Great Lakes region. 

This study focused on 12 cities within the Great Lakes region for which sufficient beach closure 

data were available (Table 1; Figure 1). To examine city-specific associations, county-level beach 

closure data were matched to the corresponding Metropolitan Statistical Area, thus forming the cities 

used in this analysis. The majority of cities correspond to only one county, however, larger cities  

(i.e., Chicago, IL; Cleveland, OH; and Detroit, MI) correspond to several surrounding counties. These 

metropolitan areas represent the core urban area and surrounding suburbs that have a high degree of 

social and economic integration. 

Table 1. Cities in the Great Lakes region included in this analysis, defined as the county or 

counties surrounding the Metropolitan Statistical Area. 

City State County 

Buffalo NY Erie  

Chicago IL Cook  

  Lake  

  McHenry  

  Will  

Cleveland OH Cuyahoga  

  Lake  

  Lorain  

Detroit MI Macomb  

  Oakland  

  Wayne  
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Table 1. Cont. 

City State County 

Erie PA Erie  

Gary IN Lake  

Grand Rapids MI Kent  

Milwaukee WI Milwaukee  

Minneapolis MN Ramsey  

Rochester NY Monroe  

Rockford IL Winnebago  

Toledo OH Lucas  

Figure 1. Location of beaches in the Great Lakes region included in this analysis,  

cities correspond to the surrounding county or counties for which data was available. 

 

2.2. Data Sources and Variables for Analysis 

2.2.1. Hospital Admissions 

Hospital admission (HA) records for individuals 65 years and older and enrolled in Medicare were 

obtained from the Centers for Medicare and Medicaid Services for the 12 cities from 2000 to 2006. 

Approximately 98 percent of all people in this age range are enrolled in Medicare [30]. Hospital 

admission records included date of admission, cause of admission (International Classification of 

Disease, 9th Revision, ICD-9), and individual-level characteristics, including patient age, sex, race, 

and zipcode. University of Michigan Institutional Review Board approval was obtained for this analysis. 

Based on previous research, cause of admission was defined as GI-related if the primary, secondary, 

or tertiary ICD-9 code was classified as: (i) a pathogen specific intestinal infectious disease  

(ICD 001-007; 120-129), (ii) other and ill-defined intestinal infectious disease (008–009), or  
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(iii) diarrheal disease-related symptoms (276, 558.9, 787) [22,31]. Data were collapsed into daily 

counts of GI for each of the 12 cities.  

2.2.2. Beach Closures 

Daily recreational water quality data were obtained from the county-level organizations responsible 

for water quality monitoring in each of the 12 cities. In some cases these data were publicly available, 

but in other instances the data were accessed via direct communication with Recreational Water 

Quality and Beach Program Managers. Data included daily concentration of E. coli or fecal coliform 

bacteria in water samples during the summer swimming period (1 May–30 September) over the study 

period 2000–2006. A beach was defined as closed if the concentration of E. coli was greater than or 

equal to the full body contact (single sample) standard of 235 CFUs per 100 mL of water or if the 

concentration of fecal coliforms was greater than or equal to the geometric mean standard of  

200 CFUs per 100 mL of water [6]. Otherwise, a beach was defined as open. Although the EPA water 

quality criteria were updated in 2012 to increase protection of primary contact recreation, in the current 

study beach closures were defined based on previously defined criteria.  

When more than one measure of bacterial concentration was reported for one beach on a single day, 

a daily average concentration was used. Because the number of beaches monitored on a daily basis 

varied by city and year, a binary variable was created to describe whether a recreational water quality 

advisory was administered, which allowed for standardization across cities. This variable took the 

value of 1 if any beach within the city was closed on a particular day and 0 if all beaches within the 

city were open. In Chicago and Rockford, IL water quality data were only available as a list of dates 

when beach closures occurred. Days when one or more beaches were closed within the city were 

coded as 1. All other weekdays, beaches were assumed to be open and were coded as 0. Data were not 

imputed for weekend days and were left as missing when no date was listed. Although this analysis 

modeled beach closures as a binary indicator variable, the underlying decision to close a beach was 

based on the actual bacterial concentration measured in the water. 

2.2.3. Meteorological Conditions 

Hourly meteorological data including precipitation, temperature, dew point, and relative humidity 

were downloaded from the first order weather station of the National Weather Service (NWS) 

Cooperative Observer Program [32] for each city. Apparent temperature (AT) was used as a measure 

of the combined effects of temperature and humidity: AT = −2.653 + (0.994  Ta) + (0.0153  Td
2), 

where Ta is equal to air temperature (°C) and Td is equal to dew point temperature (°C) [33,34]. Daily 

summaries were created from the hourly measurements for apparent temperature and total precipitation.  

Precipitation was categorized based on the city-specific summer time rainfall distribution. 

Categories were defined as: (1) Precipitation equal to 0 (reference category); (2) greater than 0, but 

less than 0.01 inches (0.25 mm); (3) greater than or equal to 0.01 inches (0.25 mm), but less than the 

90th percentile and; (4) greater than or equal to the 90th percentile. Thus, the effects of no, trace, 

moderate, and extreme precipitation were evaluated. The 90th percentile was chosen as the cutoff for 

extreme precipitation based on previous research and the observable increase in risk of water 
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contamination during extreme precipitation events [9,13,35]. Table 2 lists the data sources for hospital 

admissions, recreational water quality, and meteorological data used in this analysis. 

Table 2. Data sources corresponding to hospital admission, meteorological, and 

recreational water quality data. 

Data Type Data Source 

Hospital Admission Data Centers for Medicare and Medicaid Services

Meteorological Data 
National Weather Service Cooperative 
Observer Program  

Recreational Water Quality Data (county, state)  

Cook; Lake; McHenry; Will; and Winnebago, IL
Illinois Department of Public Health: 
Environmental Health 

Lake, IN 
Indiana Department of  
Environmental Management 

Kent; Macomb; Oakland; and Wayne, MI 
Michigan Department of Natural Resources 
and the Environment  

Ramsey, MN Ramsey County Public Works 

Erie; and Monroe, NY New York State Health Department 

Cuyahoga; Lake; Lorain; and Lucas, OH Ohio Department of Health 

Erie, PA Erie County Department of Health 

Milwaukee; and Waukesha, WI Wisconsin Department of Natural Resources

2.3. Statistical Analysis  

The primary goal of this study was to estimate the association between extreme precipitation and 

beach closures, and subsequent risk of GI-related hospital admissions, while controlling for 

meteorological conditions. In cases, like this, where only a certain season is of interest (e.g., summer), 

it is common to use a discontinuous time-series to splice together the seasons of interest over the study 

period. This method forces the estimate at the end of the season of interest in one year to match the 

estimate at the beginning of the season in the following year, without regard to effects of the  

“off season” on the estimate. Therefore, a secondary goal of this study was to evaluate potential bias 

associated with using summer-only data in time-series analysis and introduce innovative methods to 

reduce such bias. In our study, Poisson regression models were fit under three scenarios to control for 

long-term time trends in the data. First, models were run without using a spline term; second, with a 

spline term estimated by the discontinuous summer-only time-series; and thirdly, using a two-stage 

Poisson regression approach. In the two-stage approach, the spline term was initially estimated using 

the entire hospital admission time-series. The estimated spline fragments corresponding to the seven 

summers were then added to the Poisson regression model as an offset. 

City-specific statistics were summarized using scatterplots and histograms. In order to compare our 

data to previous research, which found precipitation during the previous 1–3 days to be a strong predictor 

of recreational water quality, a city-specific logistic regression was used to estimate the association 

between precipitation (PRCP) and beach closures (BC) over a 3-day lag period (Model 1) [9,36,37]: 

Model 1: [logit[Pr(BC=1)] = β0 + β 1PRCPlag-x] 
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where BC is a binary variable representing the occurrence of a beach closure and precipitation is a 

categorical variable based on the 90th percentile, x = 1, 2, and 3. Next, the crude association between 

beach closures and daily GI-related hospital admissions was evaluated using city-specific Poisson 

regression models. The over-dispersion parameter was considered [38] and tested using Dean’s test [39]. 

2.3.1. Exploring Lags  

Because observed health effects may occur several days after exposure due to delayed onset of 

clinical symptoms and environmental transport, a 7-day lag period was chosen for this analysis to be 

consistent with the incubation period of most bacterial and viral waterborne pathogens [40].  

Seven separate models were run using precipitation at single-day lags, 1 to 7 days prior to the 

hospitalization date, as the independent variable.  

2.3.2. Exploring Confounding  

As apparent temperature can influence pathogen replication, persistence, and transmission [26,41–43] 

as well as the health of elderly populations [44], it was included as a potential confounder. It was 

matched to the lagged day of beach closure. Because hospital admissions are known to vary by day of 

week, an indicator variable for day of week was also included in the model (Model 2): 

Model 2: log[E(HAt)] = β0 + β1BCt-q + β2PRCPt-q + β3ATt-q + β4DOWt 

where HA is daily GI-related hospital admissions, BC is a binary variable representing the occurrence 

of a beach closure, precipitation is categorized based on the 90th percentile, q = 1, 2, … 7 represents 

single-day lags 1–7 days prior to the day of hospital admission, AT represents apparent temperature, 

and DOW represents the day of week. 

2.3.3. Exploring the Effect of Long-Term Time Trends 

To control for long-term time trends in hospital admissions, a nonlinear smoothing term for time was 

included in the Poisson regression model (i.e., penalized spline). Smoothing parameters were estimated 

to minimize the generalized cross validation score [45,46]. This model took the 7-year summer-only 

time-series and spliced the summer periods together, creating a discontinuous time-series (Model 3): 

Model 3: log[E(HAt)] = β0 + β1BCt-q + β2PRCPt-q + β3ATt-q + β4DOWt + s(t) 

where s(time) represents a penalized spline on time.  

The final stage of analysis was a two-stage Poisson regression model, in which the entire 7-year 

time-series of GI-related hospital admissions was fit using a penalized spline term (Model 4, Stage 1). 

The estimated spline fragments corresponding to the seven summers were then added to the full 

Poisson regression model as an offset. This model also explored lags and potential confounders 

(Model 4, Stage 2):  

Model 4, Stage 1: log[E(HAt)] = s(t) 

Model 4, Stage 2: log[E(HAt)] = β0 + β1BCt-q + β2PRCPt-q + β3ATt-q + β4DOWt + offsett 
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2.3.4. Calculating A Regional Estimate 

City-specific estimates were collapsed into an overall summary estimate for the region using a 

fixed-effect model. Results were pooled using the inverse-variance weighting estimator. If the null 

hypothesis was rejected (p ≤ 0.05), a random-effects model, accounting for both within- and between-

city variation, was applied [47,48]. All analyses were run using SAS Version 9.2 (SAS Institute, Cary, 

NC, USA) and R 12.0 (R Foundation for Statistical Computing, Vienna, Austria).  

3. Results and Discussion 

Over the 7-year study period, approximately 40,000 GI-related hospital admissions were recorded 

among individuals over the age of 65 across 12 cities in the Great Lakes region (Table 3). The average 

number of daily GI-related hospital admissions ranged from 0.42 in Erie, PA to 14.47 in Chicago, IL, 

with an overall daily average of 2.66. From 2000 to 2006, over 100 beach closure days were recorded 

during the swimming season, defined as May 1st to September 30th. On average, beaches were closed 

10% of the time. However, in Chicago, IL; Cleveland, OH; and Milwaukee, WI, beaches were closed 

over 20% of the time. Daily precipitation during the swimming season in the Great Lakes region 

ranged from 0 to 4.45 inches (113 mm), with an overall mean daily total of 0.12 inches (3.05 mm). For 

all 12 cities, precipitation had a skewed distribution, with zero precipitation recorded on nearly 65% of 

days during the swimming season. Mean daily apparent temperature, for the region, was 19 °C (67 °F). 

Precipitation and apparent temperature followed consistent seasonal trends throughout the study period 

across all cities.  

Extreme precipitation above the 90th percentile, occurring on the previous day (lag 1), was a 

significant predictor (p < 0.05) of beach closures in 8 of the 12 cities (Buffalo, NY; Cleveland, OH; 

Detroit, MI; Erie, PA; Gary, IN; Milwaukee, WI; Rochester, NY; and Toledo, OH) (Table 4). 

However, no consistent trends were observed for the risk of GI-related hospital admissions following a 

beach closure (Table 5). In Erie, PA; Minneapolis, MN; Rochester, NY; and Toledo, OH beach 

closures were positively associated with GI-related hospital admissions among the elderly in at least 

one of the 7 different lag models. In Buffalo, NY; Chicago, IL; Cleveland, OH; and Detroit, MI, 

however, the association between beach closures and GI-related hospital admissions indicated a 

statistically significant inverse relationship in at least one of the seven different lag models. In the four 

remaining cities Gary, IN; Grand Rapids, MI; Milwaukee, WI; and Rockford, IL no significant 

associations were found. 

In the instances where beach closures were positively associated with GI-related hospital 

admissions, lags 1, 2, 3, and 7 were significant. Risk ratios ranged from 1.30 (95% confidence interval 

(CI): 1.00, 1.68) in Rochester at lag 3 to 1.76 (95% CI: 1.13, 2.75) in Minneapolis at lag 1.  

As a sensitivity analysis, models were re-run with an indicator of cumulative exposure to extreme 

precipitation (7-day moving average); results were consistent. When the results were pooled across the 

12 cities, the overall effect estimate was not significant (Table 5). The main effect of extreme 

precipitation on hospital admissions was only significant in two cities: in Chicago at lag 1 with a RR of 

1.12 (1.00, 1.24) and in Detroit at lag 6 with a RR of 1.29 (1.06, 1.58) (Appendix Table A1).  
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The lack of statistical significance may be due to low power related to too few extreme events or too 

few GI-related hospital admissions. 

Table 3. Summary statistics for 12 Great Lakes cities during the swimming season  

(1 May–30 September) from 2000 to 2006. 

City 
Population 

Over 65a (% 
of Population) 

Mean Daily 
GI-Related 
Admissions 

(per 100,000) 

Mean Daily 
Beach 

Closures 
(Total)  

Median daily 
Total 

Precipitation 
(mm) (90th 
Percentile)  

Mean daily 
Apparent 

Temperature 
°C (°F) 

Buffalo, NY 151,258 (16) 1.48 (0.98) 0.93 (292) 0.00 (9.40) 18.99 (66.19)
Chicago, IL 747,777 (11) 14.47 (1.94) 0.61 (506) 0.00 (9.63) 20.39 (68.71)
Cleveland, OH 284,788 (15) 4.89 (1.72) 1.47 (535) 0.00 (9.63) 20.22 (68.39)
Detroit, MI 491,592 (12) 7.35 (1.50) 0.71 (342) 0.00 (9.40) 20.44 (68.80)
Erie, PA 40,256 (14) 0.42 (1.04) 0.40 (103) 0.00 (10.67) 19.38 (66.89)
Gary, IN 63,234 (13) 0.95 (1.50) 0.90 (293) 0.00 (10.67) 20.27 (68.49)
Grand Rapids, MI 59,625 (10) 0.69 (1.16) 0.43 (15) 0.00 (11.43) 19.14 (66.46)
Milwaukee, WI 121,685 (13) 2.38 (1.96) 0.90 (376) 0.00 (9.40) 19.06 (66.31)
Minneapolis, MN 59,502 (12) 1.95 (3.28) 0.23 (17) 0.00 (10.67) 19.33 (67.79)
Rochester, NY 95,779 (13) 0.80 (0.84) 0.40 (145) 0.00 (9.65) 19.29 (66.22)
Rockford, IL 35,450 (13) 0.51 (1.44) 0.10 (75) 0.00 (9.65) 20.14 (68.26)
Toledo, OH 59,441 (13) 0.57 (0.96) 0.44 (115) 0.00 (9.65) 20.44 (68.8) 

Note: a Population estimate based on the 2000 U.S. Census [49]. 

Table 4. City-specific odds ratios (OR) with p-values evaluating the association between 

daily categorical precipitation a at lag 1 (1-day previous) and beach closures in 12  

Great Lakes cities from 2000 to 2006. 

Precipitation Category City-specific OR City-specific OR City-specific OR City-specific OR

 (p-value) (p-value) (p-value) (p-value) 

 Buffalo, NY  Chicago, IL Cleveland, OH Detroit, MI 

0 < prcp < 0.01 2.42 (0.14) 1.69 (0.23) 1.77 (0.30) 1.28 (0.68) 

0.01 ≤ prcp < 90th percentile 2.94 (<0.001) 1.34 (0.14) 1.65 (0.07) 1.42 (0.13) 

prcp ≥ 90th percentile 16.93 (<0.001) 1.20 (0.41) 7.39 (0.00) 4.02 (<0.001) 

 Erie, PA Gary, IN 
Grand Rapids, 

MI 
Milwaukee, WI 

0 < prcp < 0.01 0.00 (0.98) 1.48 (0.70) - 0.93 (0.89) 

0.01 ≤ prcp < 90th percentile 2.31 (0.09) 1.53 (0.15) 1.71 (0.54) 1.41 (0.22) 

prcp ≥ 90th percentile 10.21 (<0.001) 2.01 (0.05) 0.57 (0.64) 2.01 (0.04) 

 Minneapolis, MN Rochester, NY Rockford, IL Toledo, OH 

0 < prcp < 0.01 2.00 (0.59) 2.67 (0.03) 0.00 (0.09) 2.02 (0.29) 

0.01 ≤ prcp < 90th percentile 1.33 (0.75) 1.91 (0.03) 0.51 (0.17) 1.24 (0.55) 

prcp ≥ 90th percentile 1.60 (0.50) 5.67 (<0.001) 0.66 (0.40) 9.07 (<0.001) 

Not:  a Reference category is where precipitation is equal to 0. 
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Table 5. City-specific risk ratios a (95% confidence intervals) corresponding to the risk of 

GI-related hospital admissions among the elderly following beach closures over a 1-week 

lag using a two-stage spline structure in 12 Great Lakes cities 2000–2006. 

 Buffalo, NY  Chicago, IL Cleveland, OH Detroit, MI Erie, PA 

lag 1 0.96 (0.79, 1.16) 0.96 (0.91, 1.00) 0.99 (0.90, 1.09) 1.01 (0.94, 1.08) 1.49 (0.90, 2.46)
lag 2 0.97 (0.79, 1.19) 1.02 (0.97, 1.07) 1.05 (0.95, 1.17) 1.00 (0.93, 1.08) 1.67 (1.02, 2.76)
lag 3 1.04 (0.85, 1.28) 1.00 (0.95, 1.05) 0.88 (0.80, 0.98) 0.97 (0.90, 1.05) 1.15 (0.69, 1.93)
lag 4 0.98 (0.81, 1.20) 1.01 (0.96, 1.06) 0.96 (0.86, 1.06) 0.99 (0.92, 1.07) 1.23 (0.70, 2.18)
lag 5 0.78 (0.63, 0.96) 1.02 (0.97, 1.07) 1.02 (0.92, 1.14) 0.92 (0.86, 0.99) 0.49 (0.22, 1.06)
lag 6  0.92 (0.75, 1.12) 1.02 (0.98, 1.08) 1.03 (0.93, 1.15) 0.95 (0.88, 1.02) 1.54 (0.89, 2.65)
lag 7 0.92 (0.75, 1.12) 1.00 (0.96, 1.05) 0.96 (0.87, 1.06) 0.97 (0.90, 1.04) 0.94 (0.52, 1.68)

 Gary, IN Grand Rapids, MI Milwaukee, WI Minneapolis, MN Rochester, NY 
lag 1 0.90 (0.71, 1.15) 0.70 (0.22, 2.13) 1.05 (0.89, 1.24) 1.76 (1.13, 2.75) 0.84 (0.64, 1.10)
lag 2 1.08 (0.85, 1.38) 1.74 (0.74, 4.09) 1.02 (0.87, 1.20) 1.13 (0.72, 1.75) 0.86 (0.65, 1.12)
lag 3 1.01 (0.80, 1.28) 1.13 (0.51, 2.51) 0.99 (0.84, 1.17) 1.08 (0.68, 1.69) 1.30 (1.00, 1.68)
lag 4 1.03 (0.81, 1.31) 1.26 (0.50, 3.17) 1.03 (0.88, 1.21) 0.70 (0.40, 1.22) 0.96 (0.73, 1.26)
lag 5 0.99 (0.78, 1.25) 0.66 (0.17, 2.57) 1.08 (0.92, 1.27) 1.14 (0.69, 1.86) 0.97 (0.74, 1.28)
lag 6  1.11 (0.87, 1.41) 1.49 (0.49, 4.50) 0.99 (0.84, 1.16) 1.10 (0.73, 1.67) 1.03 (0.79, 1.35)
lag 7 0.87 (0.69, 1.11) 2.41 (0.75, 7.77) 1.07 (0.91, 1.26) 0.75 (0.51, 1.10) 1.19 (0.92, 1.53)

 Rockford, IL Toledo, OH Pooled-Estimate   
lag 1 1.11 (0.67, 1.82) 0.97 (0.68, 1.38) 0.98 (0.95, 1.01)   
lag 2 0.78 (0.42, 1.43) 0.70 (0.47, 1.02) 1.01 (0.98, 1.05)   
lag 3 0.83 (0.46, 1.50) 1.13 (0.77, 1.65) 0.98 (0.95, 1.02)   
lag 4 1.04 (0.62, 1.74) 0.64 (0.43, 0.97) 1.00 (0.96, 1.03)   
lag 5 1.35 (0.85, 2.13) 1.03 (0.71, 1.48) 0.99 (0.95, 1.02)   
lag 6  0.77 (0.42, 1.43) 1.01 (0.71, 1.45) 1.01 (0.97, 1.04)   
lag 7 1.30 (0.81, 2.10) 1.67 (1.22, 2.30) 0.99 (0.96, 1.03)   

Note: a Two-stage Poisson regression adjusted for meteorological conditions, day of week, and long-term 

time trends. 

Comparing the different spline structures, no significant differences were observed. In cities where 

a significant association was observed in at least one of the seven different lag models, that association 

was consistent across spline structures (Appendix Table A2). In cities where no association was 

observed for any lag, that also remained consistent across spline structures. While the different spline 

structures used to control long-term time trends did not alter the significance or magnitude of the 

associations reported, there was an observable difference between the two different spline estimates 

(Figure 2). Using Detroit as an example, the spline estimated from the discontinuous time-series was 

unique compared to the spline estimated from the entire time-series in the two-stage analysis. In all 

instances, the spline estimated from the entire time-series was numerically different from that 

estimated from the discontinuous time-series.  
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Figure 2. The discontinous, summer-only spline compared to the spline estimated using 

the entire 7-year time-series in the two-stage spline model, using Detroit, MI as an example. 

 

In general, extreme precipitation, above the 90th percentile, at lag 1, was a significant predictor of 

beach closures in 8 of the 12 cities. However, no consistent association between beach closures and 

GI-related hospital admissions among the elderly was observed. In this study, novel methodology to 

control for long-term time trends using season-specific data was proposed and results using three 

different spline structures were compared. While no significant differences in the effect estimates were 

observed in this analysis, the two-stage Poisson model, which utilizes the full time-series to control for 

long-term time trends in the outcome variable, is recommended for future work focused on  

season-specific analyses.  

The two-stage spline structure presented in Model 4 can be applied to a variety of studies where 

only one season is of interest. By comparing results from the two-stage spline model to results from a 

model with no spline, as well as a model with a spline estimated from the discontinuous, summer-only 

time-series, we addressed an important methodological question regarding the most appropriate way to 

conduct time-series analysis when exposure data is only available for a portion of the year. Results, in 

this case, did not differ markedly across the three different modeling approaches. One explanation may 

be that GI-related hospital admissions did not display significant variability between summer, the 

season of interest, and the rest of the year. Differences in effect estimates are more likely to be 

observed between the discontinuous time-series model and a two-stage time-series model when the 

health outcome varies across seasons. If hospital admissions had shown more variability across 

seasons, the two-stage spline structure would have minimized confounding by long-term time trends 

and reduced potential bias. 

Although the results presented here do not reveal a consistent or significant association between 

beach closures and GI-related hospital admissions, previous research states that poor recreational water 

quality has the potential to adversely impact human health. Previous research confirms that 

precipitation is linked to water quality indicators such as E. coli concentrations and turbidity [9,36].  

E. coli concentrations in recreational waters are estimated to peak approximately 24 to 72 hours 
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following precipitation events in the Great Lakes region [11,13]. Previous research has also reported a 

delayed onset of diarrheal disease following extreme precipitation and related increases in water 

quality indicators [16,19,21,22,50,51]. 

While Sampson et al. [52] found no association between rainfall and bacteria at any of their 15 sites 

along the Wisconsin shores of Lake Superior (water samples were taken following any rain event of at 

least 0.25 inches (6.35 mm)), our study evaluated extreme precipitation events, above the 90th 

percentile (0.40 inches (10.16 mm)). These extreme events were found to be a significant predictor of 

recreational water quality in a majority of cities. Results from a specific location should not necessarily 

be used to make decisions regarding beach closures at other locations [52]. For example, Haack et al. [36] 

concluded that rainfall 48 to 72 hours prior was significantly associated with E. coli concentrations at 

three Southern beaches in Grand Traverse Bay in Lake Michigan, but only 24 h prior at Western and 

Eastern beach locations. 

Results from our analysis suggest that precipitation should be modeled in a way that accommodates 

the skewed distribution and the nonlinear associations often observed between precipitation and daily 

hospital admissions. Modeling precipitation as a categorical variable, as we did, is a suitable approach.  

One of the primary limitations of this analysis is related to data specificity; GI-related hospital 

admissions are dramatically underreported and the etiology is rarely identified [53,54]. The symptoms 

associated with exposure to contaminated recreational water are relatively broad-spectrum symptoms. 

Therefore, it is challenging to observe direct associations between exposure and outcome. 

Additionally, the period of interest is quite limited: on average only 35% of summer days had 

measurable amounts of precipitation. Further, recreational water quality monitoring was not consistent 

over the study period. Use of a binomial indicator for beach closings may have biased results towards 

the null. This binary coding also fails to differentiate between when one beach was closed and ten 

beaches were closed for a particular city, such misclassification may make it more difficult to identify 

a significant association. The absence of an association between extreme precipitation and GI-related 

hospitalization could also be due to infrequent use of and limited exposure to surface waters for 

recreation by Medicare beneficiaries. 

Lastly, it is important to note that precipitation can be much localized; use of single city monitoring 

stations did not allow for spatially explicit analysis. However, a major strength of this analysis was its 

use of publicly available data across a wide geographic area to explore the impact of extreme 

precipitation on beach closures and subsequent risk of waterborne disease, which has implications for 

recreational water management at the local level. 

This study was conducted to evaluate whether beach closure and Medicare data, both easily 

accessible, could be used as a proxy for evaluating risk of GI. The development of such a universal 

model would help beach managers and public health professionals assess risk across a wide geographic 

area and prioritize resources accordingly. Because the association between recreational water quality 

and hospital admissions was only being investigated in select cities in the Great Lakes region, 

conclusions may not be applicable to marine or estuarine recreational waters or other regions of the 

country where socio-demographic, meteorological, and hydrodynamic conditions may vary.  

Future work in this area should promote the use of a consistent definition of extreme precipitation 

so that decision-makers can have a shared understanding of the risks associated with heavy 
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precipitation events. Our results linking extreme precipitation to beach closures provide additional 

support for precipitation-based public health warning systems [55]. 

4. Conclusions 

In a majority of the 12 Great Lakes cities, extreme precipitation (≥90th percentile) was significantly 

associated with beach closures. However, no consistent trend was observed between beach closures 

and GI-related hospital admissions among the elderly. Nonetheless, the risk of waterborne disease 

outbreaks must be considered in the context of a changing climate. In order to predict future health 

outcomes, it is critical to understand how current meteorological factors drive seasonal patterns of 

water quality and disease [24]. According to the IPCC Special Report on managing the risks of 

extreme events and disasters, a changing climate is linked to changes in frequency, intensity, duration, 

and timing of extreme events [56]. These changes in precipitation will directly and indirectly impact 

runoff, which has the potential to impact pathogen transport. In particular, higher winter precipitation 

has the potential to increase the occurrence of flooding and combined sewer overflows, while 

increasing summer temperatures are likely to increase the hydrophobicity of soils, reducing infiltration 

rates [57]. Further investigation exploring the impacts of these climatic changes on pathogen 

concentrations in recreational waters, and the risk of waterborne disease outbreaks across seasons is 

warranted. Future work linking extreme precipitation to beach closures and GI-related hospital 

admissions should incorporate the role of combined sewer overflows (CSOs), proximity to river 

outlets, and land cover, which are likely to influence the abundance and transport of pathogens in the 

environment. Specifically, future work should investigate whether beach closures due to microbial 

contamination are more likely at beaches in close proximity to CSOs, downstream of heavily 

urbanized areas, or nearby agricultural land. Finally, enhanced monitoring and surveillance of 

recreational water quality and cases of waterborne disease will improve our ability to protect human 

health in the face of a changing climate. 
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Appendix 

Table A1. City-specific risk ratios (95% confidence intervals) corresponding to the risk of 

GI-related hospital admissions among the elderly following extreme precipitation over a  

1-week lag using a two-stage spline structure in 12 Great Lakes cities 2000–2006. 

 Buffalo, NY  Chicago, IL Cleveland, OH Detroit, MI Erie, PA 

lag 1 0.69 (0.38, 1.25) 1.12 (1.00, 1.24) 1.02 (0.83, 1.25) 0.98 (0.78, 1.20) 1.33 (0.38, 4.60)
lag 2 1.26 (0.80, 1.99) 0.97 (0.86, 1.09) 1.03 (0.84, 1.27) 0.92 (0.73, 1.15) 0.34 (0.05, 2.49)
lag 3 1.11 (0.67, 1.83) 1.02 (0.90, 1.15) 1.13 (0.93, 1.38) 1.04 (0.83, 1.30) 2.33 (0.94, 5.77)
lag 4 0.61 (0.33, 1.13) 0.99 (0.88, 1.12) 0.96 (0.77, 1.21) 1.05 (0.83, 1.31) 1.04 (0.30, 3.61)

lag 5 1.04 (0.62, 1.72) 0.99 (0.88, 1.11) 0.93 (0.74, 1.17) 0.78 (0.61, 1.00) 0.96 (0.22, 4.14)
lag 6  0.99 (0.59, 1.69) 1.05 (0.94, 1.18) 1.01 (0.82, 1.26) 1.29 (1.06, 1.58) 1.02 (0.23, 4.46)
lag 7 1.10 (0.68, 1.79) 1.10 (0.98, 1.23) 1.11 (0.91, 1.36) 1.02 (0.81, 1.27) 0.75 (0.11, 5.37)

 Gary, IN Grand Rapids, MI Milwaukee, WI Minneapolis, MN Rochester, NY 

lag 1 1.14 (0.42, 3.11) 0.51 (0.13, 1.87) 0.86 (0.55, 1.35) 0.83 (0.27, 2.49) 1.25 (0.77, 2.02)
lag 2 1.52 (0.64, 3.59) 1.31 (0.53, 3.25) 0.91 (0.59, 1.39) 1.02 (0.41, 2.52) 0.80 (0.45, 1.41)
lag 3 0.42 (0.09, 2.00) 1.23 (0.55, 2.75) 0.93 (0.61, 1.43) 1.28 (0.60, 2.77) 1.18 (0.72, 1.94)
lag 4 1.30 (0.55, 3.07) 0.47 (0.14, 1.57) 1.19 (0.83, 1.73) 0.71 (0.23, 2.16) 1.09 (0.65, 1.84)
lag 5 1.45 (0.62, 3.39) 1.33 (0.44, 4.04) 0.66 (0.41, 1.06) 1.57 (0.67, 3.66) 0.86 (0.48, 1.56)
lag 6  0.91 (0.34, 2.49) 0.66 (0.18, 2.40) 1.02 (0.69, 1.52) 1.05 (0.45, 2.44) 1.21 (0.75, 1.95)
lag 7 0.90 (0.30, 2.72) 0.87 (0.23, 3.26) 1.08 (0.74, 1.58) 0.51 (0.20, 1.29) 1.00 (0.59, 1.72)

 Rockford, IL Toledo, OH    

lag 1 1.50 (0.90, 2.53) 0.71 (0.30, 1.69)    
lag 2 0.79 (0.38, 1.61) 0.86 (0.39, 1.88)    
lag 3 1.20 (0.64, 2.24) 0.68 (0.27, 1.70)    
lag 4 1.02 (0.53, 1.96) 0.73 (0.30, 1.82)    
lag 5 0.66 (0.31, 1.43) 0.98 (0.46, 2.11)    
lag 6  0.97 (0.47, 2.00) 1.73 (0.95, 3.15)    
lag 7 1.44 (0.79, 2.63) 1.69 (0.94, 3.02)       

Table A2. City-specific risk ratios (95% confidence intervals) corresponding to the risk of 

GI-related hospital admissions among the elderly following beach closures over a 1-week 

lag using discontinuous time-series in 12 Great Lakes cities 2000–2006. 

 Buffalo, NY  Chicago, IL Cleveland, OH Detroit, MI Erie, PA 

lag 1 0.94 (0.78, 1.14) 0.96 (0.91, 1.01) 1.02 (0.92, 1.12) 1.01 (0.94, 1.08) 1.35 (0.81, 2.25)
lag 2 0.96 (0.79, 1.18) 1.02 (0.97, 1.08) 1.08 (0.97, 1.19) 1.00 (0.93, 1.08) 1.49 (0.90, 2.49)
lag 3 1.04 (0.84, 1.27) 0.99 (0.94, 1.05) 0.89 (0.81, 0.99) 0.97 (0.90, 1.05) 1.09 (0.65, 1.84)
lag 4 0.96 (0.78, 1.17) 1.01 (0.96, 1.07) 0.97 (0.87, 1.08) 1.00 (0.93, 1.07) 1.24 (0.69, 2.20)
lag 5 0.76 (0.62, 0.93) 1.02 (0.97, 1.08) 1.04 (0.93, 1.16) 0.92 (0.86, 0.99) 0.48 (0.22, 1.05)
lag 6  0.89 (0.73, 1.09) 1.03 (0.98, 1.08) 1.06 (0.95, 1.17) 0.95 (0.88, 1.02) 1.58 (0.91, 2.74)
lag 7 0.91 (0.74, 1.11) 1.01 (0.97, 1.06) 0.97 (0.87, 1.08) 0.97 (0.90, 1.04) 0.87 (0.48, 1.58)
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Table A2. Cont. 

 Gary, IN Grand Rapids, MI Milwaukee, WI Minneapolis, MN Rochester, NY

lag 1 0.95 (0.74, 1.22) 0.62 (0.20, 1.93) 1.02 (0.86, 1.20) 1.84 (1.16, 2.91) 0.82 (0.63, 1.08)
lag 2 1.16 (0.90, 1.49) 1.89 (0.76, 4.68) 1.01 (0.86, 1.19) 1.09 (0.69, 1.71) 0.84 (0.64, 1.11)
lag 3 1.09 (0.85, 1.39) 1.11 (0.48, 2.60) 0.99 (0.84, 1.17) 0.96 (0.60, 1.55) 1.28 (0.99, 1.65)
lag 4 1.13 (0.88, 1.46) 1.37 (0.53, 3.58) 1.05 (0.90, 1.23) 0.61 (0.35, 1.05) 0.94 (0.72, 1.24)
lag 5 1.06 (0.82, 1.38) 1.48 (0.26, 8.57) 1.08 (0.92, 1.27) 1.10 (0.67, 1.81) 0.96 (0.73, 1.27)
lag 6  1.22 (0.94, 1.57) 1.35 (0.45, 4.05) 1.00 (0.86, 1.18) 1.07 (0.70, 1.65) 1.02 (0.78, 1.34)
lag 7 0.90 (0.70, 1.15) 2.29 (0.68, 7.76) 1.07 (0.91, 1.26) 0.77 (0.52, 1.12) 1.17 (0.91, 1.52)

 Rockford, IL Toledo, OH    

lag 1 1.10 (0.67, 1.82) 0.97 (0.68, 1.39)    
lag 2 0.77 (0.42, 1.42) 0.70 (0.48, 1.03)    
lag 3 0.81 (0.44, 1.47) 1.11 (0.76, 1.63)    
lag 4 1.02 (0.61, 1.72) 0.64 (0.42, 0.96)    
lag 5 1.35 (0.84, 2.16) 1.02 (0.71, 1.46)    
lag 6  0.75 (0.40, 1.40) 1.01 (0.71, 1.45)    
lag 7 1.29 (0.79, 2.09) 1.64 (1.19, 2.25)       
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